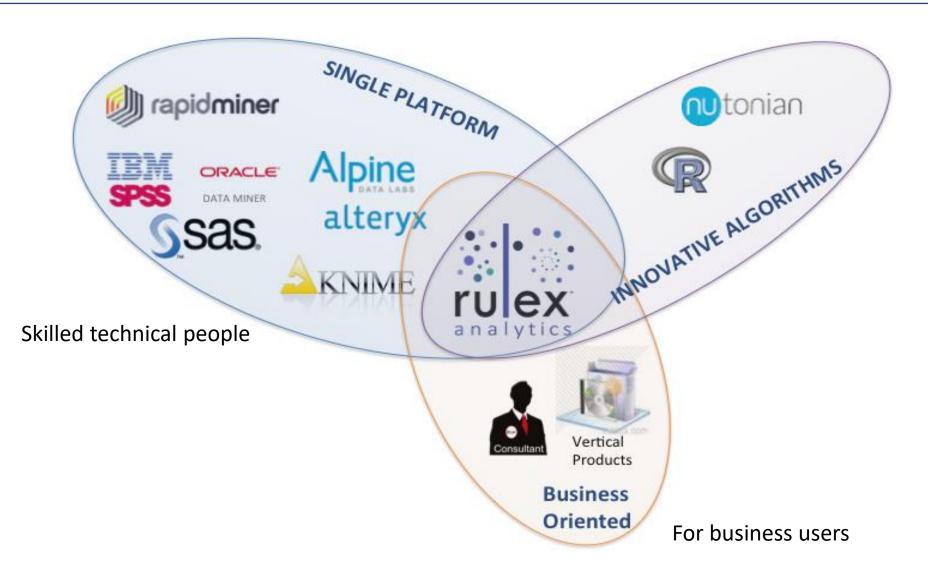

Rulex Analytics: the AI that tells you why

ML Crash Course Genoa, 2017-06-28

Enrico Ferrari, R&D Manager, Rulex Inc.

Rulex Growth: Europe & USA


Where we are

What is Rulex

Rulex Logic Learning Machine

Rulex's Logic Learning Machines are the only pattern recognition engine that provides if-then

prescriptions rules

in complex data environments, automatically.

Rulex is the **choice-enabling tool** for business decisions makers.

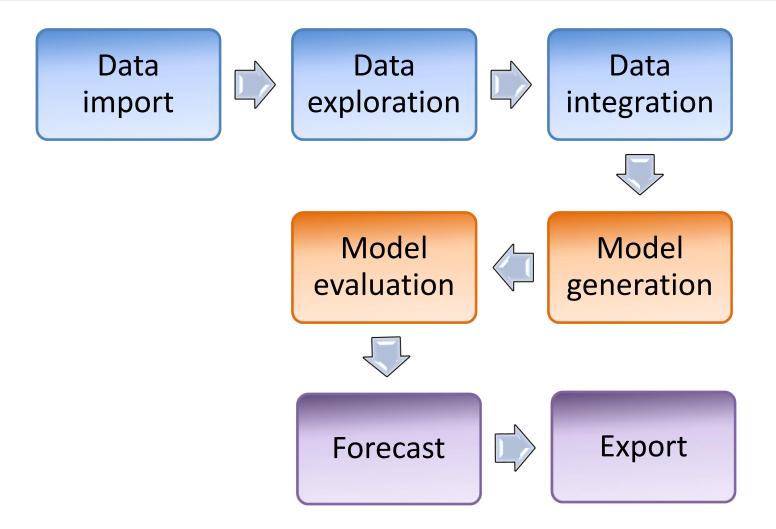
- No a priori assumptions
- Innate big data approach

Conventional vs. Cognitive Machine Learning

- Conventional ML models are computational; Rulex models are logical.
- Rulex models can be created, edited, understood by domain experts.

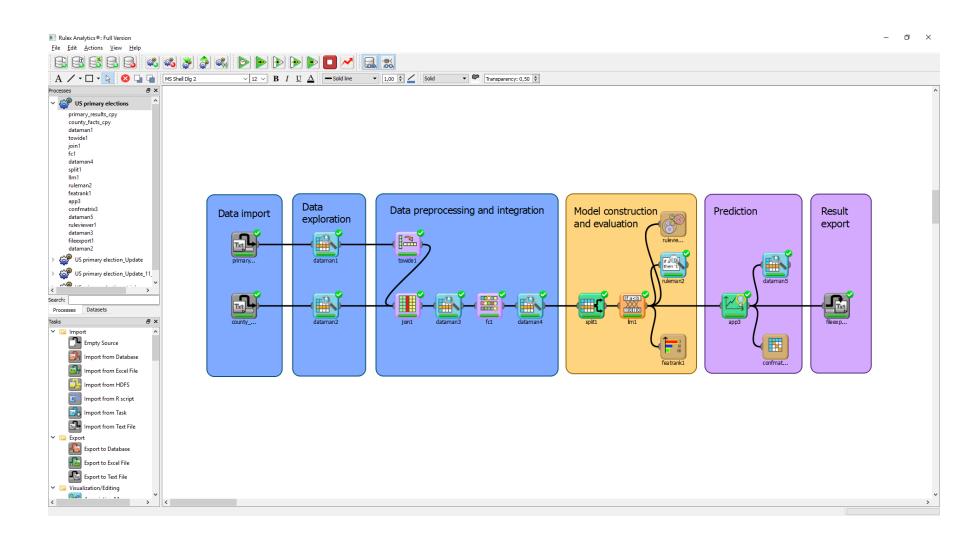
Equivalent NN and Rulex models for Kaggle Election Prediction case

```
f(\mathbf{x}) = 0.293 \tanh(0.113 x_0 + 0.337 x_1 - 0.329 x_2 + 0.251 x_3 - 0.288 x_4 - 0.297 x_5 + 0.436 x_6 +
        + \quad 0.166\,x_{7} - 0.184\,x_{8} + 0.219\,x_{9} + 0.483\,x_{10} - 0.222\,x_{11} + 0.173\,x_{12} + 0.012\,x_{13} + \\
        + 0.352 x_{14} + 0.259 x_{15} + 0.176 x_{16} + 0.345 x_{17} + 0.314 x_{18} + 0.177 x_{19} - 0.329 x_{20} +
        -0.363 x_{21} + 0.216 x_{22} - 0.148 x_{23} - 0.043 x_{24} + 0.316 x_{25} - 0.068 x_{26} - 0.421 x_{27(0)} +
        + 0.15 x_{27(1)} - 0.289 x_{27(2)} - 0.241 x_{28} + 0.16 x_{29} + 0.199 x_{30} - 0.111 x_{31} - 0.164 x_{32} +
        + 0.117 x_{33} + 0.466 x_{34} + 0.457 x_{35} + 0.133 x_{36} + 0.331 x_{37} - 0.362 x_{38} - 0.43 x_{39} +
        -0.491\,x_{40}-0.155\,x_{41}+0.371\,x_{42}-0.05\,x_{43}-0.177\,x_{44}-0.044\,x_{45}+0.225\,x_{46}+
        + 0.328 x_{47} - 0.118 x_{48} - 0.3) +
        -1.934 \tanh(-0.233 x_0 + 0.174 x_1 - 0.252 x_2 - 0.501 x_3 - 0.125 x_4 + 0.311 x_5 - 0.573 x_6 +
        -0.299 x_7 + 1.123 x_8 + 0.318 x_9 - 1.169 x_{10} + 0.105 x_{11} - 0.429 x_{12} - 0.075 x_{13} +
        -0.143 x_{14} + 0.146 x_{15} - 0.531 x_{16} + 0.077 x_{17} - 0.133 x_{18} - 0.122 x_{19} + 0.162 x_{20} +
        -0.08 x_{21} - 0.496 x_{22} - 0.21 x_{23} - 0.113 x_{24} + 0.485 x_{25} + 0.575 x_{26} - 0.126 x_{27(0)} +
        + 0.135 x_{27(1)} + 0.022 x_{27(2)} - 0.352 x_{28} - 0.693 x_{29} + 0.379 x_{30} + 0.409 x_{31} - 0.109 x_{32} +
        +\ 0.228\,x_{33} + 0.292\,x_{34} + 0.161\,x_{35} - 0.086\,x_{36} - 0.3\,x_{37} - 0.089\,x_{38} + 0.163\,x_{39} +
        -0.074\,x_{40}+0.31\,x_{41}-0.849\,x_{42}+0.14\,x_{43}+0.754\,x_{44}+0.291\,x_{45}-0.533\,x_{46}+0.273\,x_{47}+
        -0.285 x_{48} - 0.286 + 0.252
```


- 1. IF (White alone, percent, 2014 <= 71.100) **THEN party = Democrat**
- **2.** IF (High school graduate or higher, percent of persons age 25+, 2009-2013 > 90.450) **THEN party = Democrat**
- 1. IF (High school graduate or higher, percent of persons age 25+, 2009-2013 <= 88.650 AND White alone, not Hispanic or Latino, percent, 2014 > 73.950) **THEN party = Republican**
- 2. IF (Persons per household, 2009-2013 > 2.615 AND White alone, percent, 2014 > 62.300 AND White alone, not Hispanic or Latino, percent, 2014 > 32.500) **THEN party = Republican**
- **3.** IF (Persons 65 years and over, percent, 2014 > 19.850 AND High school graduate or higher, percent of persons age 25+, 2009-2013 <= 90.850 AND White alone, not Hispanic or Latino, percent, 2014 > 57.350) **THEN party = Republican**
- **4.** IF (724908 < Manufacturers shipments, 2007 (\$1,000) <= 16640803 AND Asian alone, percent, 2014 <= 6.350 AND White alone, not Hispanic or Latino, percent, 2014 > 63.000) **THEN party = Republican**
- **5.** IF (Private nonfarm establishments, 2013 <= 289 AND Population per square mile, 2010 > 14.550 AND 56.150 < White alone, percent, 2014 <= 98.750) **THEN party = Republican**

Neural Network Model

Logic Learning Machine Model


A Rulex workflow from data to results ru

Rulex easy to use interface

Rulex: one software, many challenges

Categorical, continuous or discrete inputs. Categorical output.		Classification	Set of rules. Relevance for each variable
Categorical, continuous or discrete inputs. Ordered output.		Regression	Set of rules. Relevance for each variable
Categorical, continuous or discrete inputs. No output.		Clustering	Clusters of similar cases
Time series, in case with exogenous factors.		Autoregression	Time series forecast
List of transactional data		Association rules mining	Association rules. List of frequent item patterns. Packages of items. Replacement rules.
Log file of different events	A	Anomaly detection	List of most frequent sequences. List of anomalous sequences of events.
Categorical, continuous or discrete inputs. No output.		Uniclassifier	List of regular and anomalous records. Rules characterizing anomalies and regular cases.

Some applications by sector / 1

Automotive

- 1. Drivers Segmentation
- 2. Predictive Maintenance
- 3. Complexity reduction
- 4. Marketing effectiveness

Banking

- 1. Churn in Retail Banks
- 2. Bank Product cross-selling
- 3. Investments forecasting
- 4. Financial Indexes forecasting
- 5. Stock Indexes forecasting
- 6. Optimizing Business Models in Banks

Supply chain

- Demand forecast during promotions
- 2. Understanding Supermarket customer Behavior & Sales

E-Commerce

- 1. New product introduction
- 2. Sales Predictions
- 3. Automatic discounts

Education

1. Students Behavior

Energy

- 1. Solar power plant performance
- 2. Gas consumption forecasting

Healthcare

- 1. Neuroblastoma Diagnosis Support
- 2. Quality of live in chronical patients
- Identification of risk factors for problematic gambling or other dependences
- Medical Imaging

Some applications by sector / 2

Industrial Plants

- 1. Preventive Maintenance
- 2. Network optimization

Insurance

- 1. Fraud detection
- 2. Customer Behavior
- 3. Churn Analysis

Retail

- 1. Shrinkage Analytics
- Customer Behavior
- 3. Assortment Optimization
- 4. Showroom Optimization
- 5. Marketing effectiveness
- 6. Showroom Format Definition
- 7. Basket Analysis with CRM
- 8. OTC Products Optimization

Security

1. Anomaly Detection

Society, Politics & Economy

- 1. USA Election
- 2. Sustainable Development

Sport

1. Under/Over forecast

Telco

- 1. Network Optimization
- 2. Customer segmentation

Tourism

1. Visitor Behavior

Industry Acknowledgments

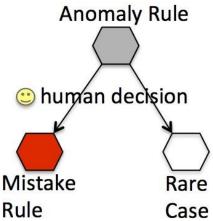
Awarded as **One of the 10 Most Disruptive Technologies** by MIT Sloan CIO Symposium 2016.

LEADING EDGE PARTNERS

Business Partner of Konica Minolta for Leading Edge Technologies.

Winner of the 2015 EY Start-Up Challenge for Big Data Analytics in Supply Chain and Customer Intelligence.

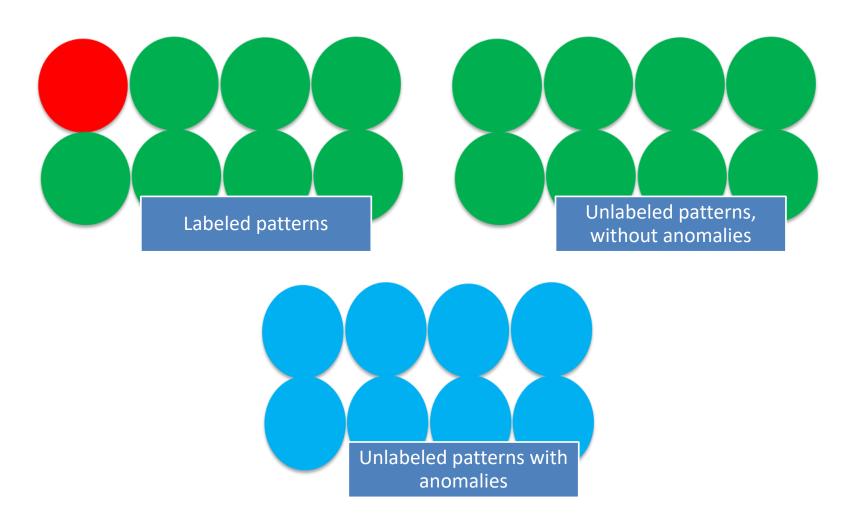
Scientific Partner of the Massachusetts General Hospital.


An application: Self-Correcting Supply Chain e

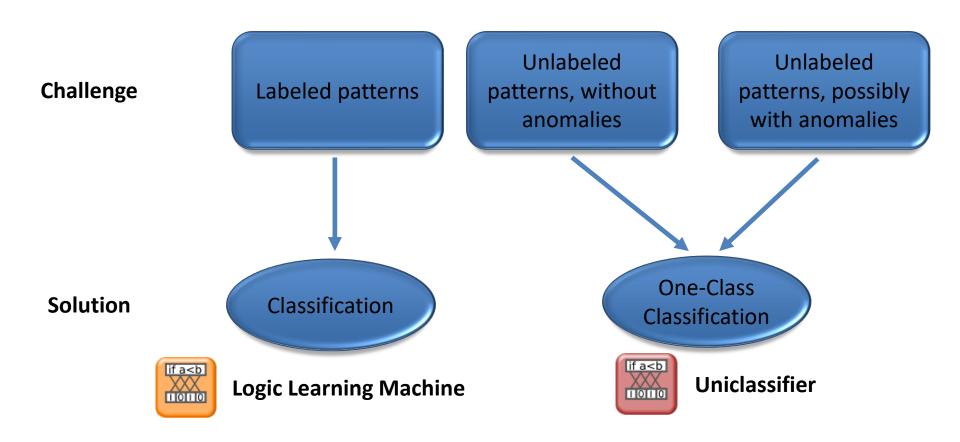
rulex

 The new solution proposed by Rulex for automating the identification and correction of anomalies in supply chain data.

Raw Materials


- Supply chain data may include:
 - Records that occur very seldom (rare cases)
 - Records that contain wrong (combination of) values (*mistake cases*)
- Only a human can recognize mistakes from rare cases

Manufacturing

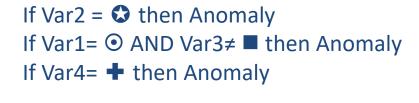

Possible situations

Rulex approach

Typical Anomaly Detection/Correction Process

- Planners and other subject matter experts (SME) identify sample errors for use by machine learning algorithms.
- Data scientists build model to predict anomalies in new data.
- SMEs eliminate outliers from and correct erroneous records.
- SMEs define and submit database record corrections.

From Data Inspection to Pattern Evaluation

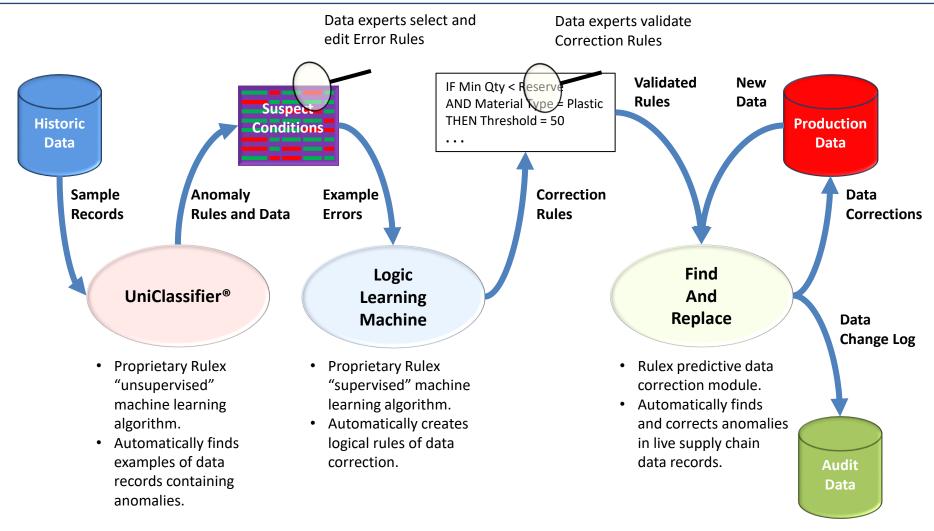


Data Inspection

Var1	Var2	Var3	Var4	Norma I
-	0	•	*	×
-	*	•	*	1
•	*		0	1
•	•		*	1
•	*	•	0	Х
	*	•	*	✓
•	*	-	+	Х
	*	•	0	1
•	*	•	0	✓

- Lengthy, costly procedural process.
- Difficult to understand why anomalies are generated.

Pattern Evaluation



- Only a few patterns to review (resource and time saving)
- Clear meaning of the anomaly (logic approach).

The Rulex (SC)² Solution

Thank you!

www.rulex.ai e.ferrari@rulex.ai