
MLCC 2017
Deep Learning

Lorenzo Rosasco
UNIGE-MIT-IIT

June 29, 2017

What? Classification

Object classification

What’s in this image?

Task:	
Object	Identification

Teaching What	is	this?

mug1 mug1 mug1 mug1 mug1 mug1 mug1 remote3

remote3 mug1 remote3remote3 remote3 remote3 remote3 remote3
Note: beyond vision: classify graphs, strings, networks, time-series. . .

L.Rosasco

What makes the problem hard?

I Viewpoint

Task:	
Object	Identification

Teaching What	is	this?

mug1 mug1 mug1 mug1 mug1 mug1 mug1 remote3

remote3 mug1 remote3remote3 remote3 remote3 remote3 remote3
I Semantic variability

The Visual Experience of a Robot

⚠Objects: not many…

Note: Identification vs categorization. . .
L.Rosasco

Categorization: a learning approach

Training

Task:	
Object	Categorization

Teaching What	is	this?

mug mug mug mug mug remote

remote mug remoteremote remote remote

…

…

Test

Task:	
Object	Categorization

Teaching What	is	this?

mug mug mug mug mug remote

remote mug remoteremote remote remote

…

…

L.Rosasco

Supervised learning

Given
(x1, y1), . . . , (xn, yn)

find f such that
signf(xnew) = ynew

I x ∈ RD a vectorization of an image

I y = ±1 a label (mug/remote)

L.Rosasco

Learning and data representation

Consider
f(x) = w>Φ(x)

a two steps learning scheme is often considered

I supervised learning of w

I expert design or unsupervised learning of the data representation Φ

L.Rosasco

Data representation

Φ : RD → Rp

A mapping of data in a new format better suited for further processing

L.Rosasco

Data representation by design

Dictionaries of features

I Wavelet & friends.

I SIFT, HoG etc.

Kernels

I Classic off the shelf: Gaussian K(x, x′) = e−‖x−x′‖
2
γ

I Structured input: kernels on histograms, graphs etc.

L.Rosasco

In practice all is multi-layer!

(an old slide)

Data representation schemes e.g. vision-speech, involve multiple (layers).

Pipeline
Raw data are often processed:

I first computing some of low level features,

I then learning some mid level representation,

I . . .

I finally using supervised learning.

These stages are often done separately:

I good way to exploit unlabelled data. . .

I but is it possible to design end-to-end learning systems?

L.Rosasco

In practice all is deep-learning!

(updated slide)

Data representation schemes e.g. vision-speech, involve deep learning.

Pipeline

I Design some wild- but “differentiable” hierarchical architecture.

I Proceed with end-to-end learning!!

Architecture (rather than feature) engineering

L.Rosasco

Road Map

Part I: Basics neural networks

I Neural networks definition

I Optimization +approximation and statistics

Part II: One step beyond

I Auto-encoders

I Convolutional neural networks

I Tips and tricks

L.Rosasco

Part I: Basic Neural Networks

L.Rosasco

Shallow nets

f(x) = w>Φ(x), x 7→ Φ(x)︸ ︷︷ ︸
Fixed

.

Examples

I Dictionaries

Φ(x) = cos(B>x) = (cos(β>1 x), . . . , cos(β>p x))

with B = β1, . . . , βp fixed frequencies.

I Kernel methods

Φ(x) = (e−‖β1−x‖2 , . . . , e−‖βn−x‖2)

with β1 = x1, . . . , βn = xn the input points.
L.Rosasco

Shallow nets (cont.)

f(x) = w>Φ(x), x 7→ Φ(x)︸ ︷︷ ︸
Fixed

Empirical Risk Minimization (ERM)

min
w

n∑

i=1

(yi − w>Φ(xi))
2

Note:
The function f depends linearly on w, the ERM problem is convex!

Convex vs. Nonconvex Optimization

Unique optimum: global/local. Multiple local optima

L.Rosasco

Interlude: optimization by Gradient Descent (GD)

Batch gradient descent

wt+1 = wt − γ∇wÊ(wt)

where

Ê(w) =

n∑

i=1

(yi − w>Φ(xi))
2

so that

∇wÊ(w) = −2

n∑

i=1

Φ(xi)
>(yi − w>Φ(xi))

I Constant step-size depending on the curvature (Hessian norm)

I It is a descent method

L.Rosasco

Gradient descent illustrated

L.Rosasco

Stochastic gradient descent (SGD)

wt+1 = wt + 2γtΦ(xt)
>(yt − w>t Φ(xt))

Compare to

wt+1 = wt + 2γ

n∑

i=1

Φ(xi)
>(yi − w>t Φ(xi))

I Decaying step-size γ = 1/
√
t

I Lower iteration cost

I It is not a descent method (SGD?)

I Multiple passes (epochs) over data needed

L.Rosasco

SGD vs GD

L.Rosasco

Summary so far

Given data (x1, y1), . . . , (xn, yn) and a fixed representation Φ

I Consider
f(x) = w>Φ(x)

I Find w by SGD

wt+1 = wt + 2γtΦ(xt)
>(yt − w>Φ(xt))

Can we jointly learn Φ?

L.Rosasco

Neural Nets

Basic idea: compose simply parameterized representations

Φ = ΦL ◦ · · · ◦ Φ2 ◦ Φ1

Let d0 = D and

Φ` : Rd`−1 → Rd` , ` = 1, . . . , L

and in particular
Φ` = σ ◦W`, ` = 1, . . . , L

where
W` : Rd`−1 → Rd` , ` = 1, . . . , L

linear/affine and σ is a non linear map acting component-wise

σ : R→ R.

L.Rosasco

Deep neural nets

f(x) = w>ΦL(x), ΦL = ΦL ◦ · · · ◦ Φ1︸ ︷︷ ︸
compositional representation

Φ1 = σ ◦W1 . . . ΦL = σ ◦WL

ERM

min
w,(Wj)j

1

n

n∑

i=1

(yi − w>ΦL(xi))
2

L.Rosasco

Neural networks jargoon

ΦL(x) = σ(WL . . . σ(W2σ(W1x)))

I Each intermediate representation corresponds to a (hidden) layer

I The dimensionalities (d`)` correspond to the number of hidden
units

I The non linearity σ is called activation function

L.Rosasco

Neural networks & neurons

x3x2x1

W 1
j

W 2
j

W 3
j

W>
j x =

3X

t=1

W t
j xt

hi, i am a neuron

I Each neuron compute an inner product based on a column of a
weight matrix W

I The non-linearity σ is the neuron activation function.

L.Rosasco

Deep neural networks

x3x2x1

W 1
j

W 2
j

W 3
j

W>
j x =

3X

t=1

W t
j xt

L.Rosasco

Activation functions

For α ∈ R consider,

I sigmoid s(α) = 1/(1 + e−α)t,

I hyperbolic tangent s(α) = (eα − e−α)/(eα + e−α),

I ReLU s(α) = |α|+ (aka ramp, hinge),

I Softplus s(α) = log(1 + eα).

L.Rosasco

Some questions

fw,(W`)`(x) = w>Φ(W`)`(x), Φ(W`)` = σ(WL . . . σ(W2σ(W1x)))

We have our model but:

I Optimization: Can we train efficiently?

I Approximation: Are we dealing with rich models?

I Statistics: How hard is it generalize from finite data?

L.Rosasco

Neural networks function spaces

Consider the non linear space of functions of the form
fw,(W`)` : RD → R,

fw,(W`)`(x) = w>Φ(W`)`(x), Φ(W`)` = σ(WL . . . σ(W2σ(W1x)))

where w, (W`)` may vary.

Very little structure. . . but we can :

I train by gradient descent (next)

I get (some) approximation/statistical guarantees (later)

L.Rosasco

One layer neural networks

Consider only one hidden layer:

fw,W (x) = w>σ(Wx) =

u∑

j=1

wjσ
(
x>W j

)

and ERM again
n∑

i=1

(yi − fw,W (xi))
2,

L.Rosasco

Computations

Consider

min
w,W
Ê(w,W), Ê(w,W) =

n∑

i=1

(yi − f(w,W)(xi)))
2.

Problem is non-convex! (possibly smooth depending on σ)

Convex vs. Nonconvex Optimization

Unique optimum: global/local. Multiple local optima

L.Rosasco

Back-propagation & GD

Empirical risk minimization,

min
w,W
Ê(w,W), Ê(w,W) =

n∑

i=1

(yi − f(w,W)(xi)))
2.

An approximate minimizer is computed via the following gradient
method

wt+1
j = wtj − γt

∂Ê
∂wj

(wt,W t)

W t+1
j,k = W t

j,k − γt
∂Ê

∂Wj,k
(wt+1,W t)

where the step-size (γt)t is often called learning rate.

L.Rosasco

Back-propagation & chain rule

Direct computations show that:

∂Ê
∂wj

(w,W) = −2

n∑

i=1

(yi − f(w,W)(xi)))︸ ︷︷ ︸
∆j,i

hj,i

∂Ê
∂Wj,k

(w,W) = −2

n∑

i=1

(yi − f(w,W)(xi)))wjσ
′(w>j x)

︸ ︷︷ ︸
ηi,k

xki

Back-prop equations: ηi,k = ∆j,icjσ
′(w>

j x)

Using above equations, the updates are performed in two steps:

I Forward pass compute function values keeping weights fixed,

I Backward pass compute errors and propagate

I Hence the weights are updated.

L.Rosasco

SGD is typically preferred

wt+1
j = wtj − γt2(yt − f(wt,Wt)(xt)))hj,t

W t+1
j,k = W t

j,k − γt2(yt − f(wt+1,Wt)(xt)))wjσ
′(w>j x)xkt

L.Rosasco

Non convexity and SGD

L.Rosasco

Few remarks

I Optimization by gradient methods– typically SGD

I Online update rules are potentially biologically plausible– Hebbian
learning rules describing neuron plasticity

I Multiple layers can be analogously considered

I Multiple step-size per layers can be considered

I Initialization is tricky- more later

I NO convergence guarantees

I More tricks later

L.Rosasco

Some questions

I What is the benefit of multiple layers?

I Why does stochastic gradient seem to work?

L.Rosasco

Wrapping up part I

I Learning classifier and representation

I From shallow to deep learning

I SGD and backpropagation

L.Rosasco

Coming up

I Autoencoders and unsupervised data?

I Convolutional neural networks

I Tricks and tips

L.Rosasco

Part II:

L.Rosasco

Unsupervised learning with neural networks

I Because unlabeled data abound

I Because one could use obtained weight for initialize supervised
learning (pre-training)

L.Rosasco

Auto-encoders

W

x

x

I A neural network with one input layer, one output layer and one
(or more) hidden layers connecting them.

I The output layer has equally many nodes as the input layer,

I It is trained to predict the input rather than some target output.

L.Rosasco

Auto-encoders (cont.)

An auto encoder with one hidden layer of k units, can be seen as a
representation-reconstruction pair:

Φ : RD → Fk, Φ(x) = σ (Wx) , ∀x ∈ RD

with Fk = Rk, k < d and

Ψ : Fk → RD, Ψ(β) = σ (W ′β) , ∀β ∈ Fk.

L.Rosasco

Auto-encoders & dictionary learning

Φ(x) = σ (Wx) , Ψ(β) = σ (W ′β)

I Reconstructive approaches have connections with so called energy
models [LeCun et al.. . .]

I Possible probabilistic/Bayesian interpretations/variations (e.g.
Boltzmann machine [Hinton et al.. . .])

I The above formulation is closely related to dictionary learning.

I The weights can be seen as dictionary atoms.

L.Rosasco

Stacked auto-encoders

Multiple layers of auto-encoders can be stacked [Hinton et al ’06]. . .

(Φ1 ◦Ψ1)︸ ︷︷ ︸
Autoencoder

◦(Φ2 ◦Ψ2) · · · ◦ (Φ` ◦Ψ`)

. . . with the potential of obtaining richer representations.

L.Rosasco

Are auto-encoders useful?

I Pre-training has not delivered as hoped: supervised training on big
data-sets is best...

I Still a lot of work on the topic: variational autoencoders, denoising
autoencoderes, sparse autoencoders...

L.Rosasco

Beyond reconstruction

In many applications the connectivity of neural networks is limited in a
specific way.

I Weights in the first few layers have smaller support and are
repeated- weight sha ring.

I Subsampling (pooling) is interleaved with standard neural nets
computations.

The obtained architectures are called convolutional neural networks.L.Rosasco

Convolutional layers

Consider the composite representation

Φ : RD → F , Φ = σ ◦W,
with

I representation by filtering W : RD → F ′,
I representation by pooling σ : F ′ → F .

Note: σ,W are more complex than in standard NN.

L.Rosasco

Convolution and filtering

The matrix W is made of blocks

W = (Gt1 , . . . , GtT)

each block is a convolution matrix obtained transforming a vector
(template) t, e.g.

Gt = (g1t, . . . , gN t).

e.g.

Gt =

t1 t2 t3 . . . td

td t1 t2 . . . td−1

td−1 td t1 . . . td−2

. .
t2 t3 t4 . . . t1

For all x ∈ RD,
W (x)(j, i) = x>gitj

L.Rosasco

Convolution and filtering

The matrix W is made of blocks

W = (Gt1 , . . . , GtT)

then
Wx = (t1 ? x), . . . , (tT ? x)

Note: Compare to standard neural nets where

Wx = t>1 x, . . . , t
>
T x

L.Rosasco

Pooling

The pooling map aggregates (pools) the values corresponding to the
same transformed template

x ? t = x>g1t, . . . , x
>gN t,

and can be seen as a form of subsampling.

L.Rosasco

Pooling functions

Given a template t, let

β = σ(x ? t) =
(
σ(x>g1t), . . . , σ(x>gN t)

)
.

for some non-linearity σ, e.g. σ(·) = | · |+.

Examples of pooling

I max pooling
max

j=1,...,N
βj ,

I average pooling

1

N

N∑

j=1

βj ,

I `p pooling

‖β‖p =

N∑

j=1

|βj |p

1
p

.

L.Rosasco

Why pooling?

The intuition is that pooling can provide some form of robustness and
even invariance to the transformations.

Invariance & selectivity

I A good representation should be invariant to semantically
irrelevant transformations.

I Yet, it should be discriminative with respect to relevant
information (selective).

L.Rosasco

Basic computations: simple & complex cells

(Hubel, Wiesel ’62)

I Simple cells
x 7→ x>g1t, . . . , x

>gN t

I Complex cells

x>g1t . . . , x
>gN t 7→

∑

g

|x>gt|+

L.Rosasco

Basic computations: convolutional networks

(Le Cun ’88)

I Convolutional filters

x 7→ x>g1t, . . . , x
>gN t

I Subsampling/pooling

x>g1t . . . , x
>gN t 7→

∑

g

|x>gt|+

L.Rosasco

Deep convolutional networks

498 Y. LeCun

Fig. 2. A convolutional network architecture, which is a particular instance of the multi-stage
architecture shown above

The role of layer 1 is to decorrelate variables and accentuate the differences (or
ratios) between them, while eliminating variations of the absolute energy so that the
non-linearity of layers 3 can always operate at its sweet spot. Decorrelation (and mean
removal) has the additional advantage of accelerating gradient-based learning [8].

Layer 2 and 3 detect conjunctions of features or motifs on the previous stage. Its role
is to non-linearly embed the input into a higher-dimensional space, so that inputs that
are semantically different are likely to be represented by different patterns of activity.
This expansion plays a similar role as using a non-linear kernel functions in a kernel
machine: in high-dimensional spaces, categories are easier to separate. More generally,
a function of interest is more likely to be linear when its input variable is embedded in a
high dimensional space. The difference with kernel machine is that our filter banks will
be trained from data, rather than simply selected from the training set.

Layer 4 serves to merge semantically similar things that have been partitioned into
different patterns of activity by the simple cells. This is where invariance is built.
Rather than producing invariance in the mathematical sense, the pooling layer merely
“smoothes out” the input-output mapping so that irrelevant variations in the input affect
the output smoothly, and in ways that can be easily dealt with (eliminated, if necessary).
The pooling operation can consist of any symmetric aggregation function, such as an
average, a max, a log-mixture (log

∑
i exi), or an Lp norm (p

√∑
i |xi|p), particularly

with p = 1, 2, or ∞ (max). A theoretical analysis of pooling operations suggests that
L∞ is best when the features are sparse and the number of pooled variable is small,
while average, L1 or L2 are best when the features are less sparse or the pooling area is
large [9]. In practice L2 pooling is a good tradeoff.

One may interpret the filter bank and non-linearity as conjunction operators (similar
to logical AND or NAND in the boolean case) and the pooling operation as a sort of dis-
junction operator (similar to a logical OR), making a single stage a kind of non-boolean
Disjunctive Normal Form.

1.2 Convolutional Architectures

Data from natural sensors often comes to us as multi-dimensional arrays in which lo-
cal group of values are correlated, and the local statistics are invariant to the particular

Filtering Pooling

Filtering Pooling

First
Layer

Second
Layer

Input Output
Classifier

In practice:

I multiple convolution layers are stacked,

I pooling is not global, but over a subset of transformations
(receptive field),

I the receptive fields size increases in higher layers.

L.Rosasco

A biological motivation

Visual cortex
The processing in DCN has
analogies with computational
neuroscience models of the
information processing in the
visual cortex see [Poggio et al.
. . .].

Classification
units

PIT/AIT

V4/PIT

V2/V4

V1/V2

Figure 2: Sketch of the Hmax hierarchical model of visual processing:
Acronyms: V1, V2 and V4 correspond to primary, second and fourth visual
areas, PIT and AIT to posterior and anterior inferotemporal areas, respectively
(tentative mapping with areas of the visual cortex shown in color, some areas
of the parietal cortex and dorsal streams not shown). The model relies on
two types of computations: A max-like operation (shown in dash circles) over
similar features at di↵erent position and scale to gradually build tolerance to
position and scale and a bell-shaped tuning operation (shown in plain circle) over
multiple features to increase the complexity of the underlying representation.
Since it was originally developed Riesenhuber and Poggio (1999), the model has
been able to explain a number of new experimental data (Serre et al., 2007).
This includes data that were not used to derive or fit model parameters. The
model seems to be qualitatively and quantitatively consistent with (and in some
cases actually predicts) several properties of subpopulations of cells in V1, V4,
IT, and PFC as well as fMRI and psychophysical data (see Serre and Poggio,
2010, for a recent review).

5

L.Rosasco

Which activation function?

I Biological motivation

I Rich function spaces

I Avoid vanishing gradient

I Fast gradient computation

ReLU: It has the last two properties! It seems to work best in practice!
L.Rosasco

SGD is slow...

Accelerations

I Momentum

I Nesterov’s method

I Adam

I Adagrad

I . . .
L.Rosasco

Mini-Batch SGD

I GD: use all points each iteration to compute gradient

I SGD: use one point each iteration to compute gradient

I Mini-Batch: use a mini-batch of points each iteration to compute
gradient

Why? Faster convergence/More stable behavior
L.Rosasco

Initialization: learning from scratch
More Data and GPUs

AlexNet outmatches the ILSVRC 2012

Large-scale Datasets General Purpose GPUs

AlexNet
Krizhevsky
et al (2012)

L.Rosasco

Initialization & fine tuning

dog(0)
cat	(0)

boat(1)

bird	(0)

ytrue

L.Rosasco

Initialization & fine tuning

mug	(0.05)

phone	(0.95)
mug	(0)

phone	(1)

ytrue

FORWARD

BACKWARD

	

x
conv

1
conv

2
fc

6
fc

7x CNN(X)	=	ypred
fcN

8

min	E(ytrue,ypred)	

arg	min	E(w1,	w2,…)	

			 	

L.Rosasco

Initialization & fine tuning

mug	(0.05)

phone	(0.95)
mug	(0)

phone	(1)

ytrue

FORWARD

BACKWARD

	

x
conv

1
conv

2
fc

6
fcN

7x CNN(X)	=	ypred
fcN

8

min	E(ytrue,ypred)	

arg	min	E(w1,	w2,…)	

			 	

L.Rosasco

Initialization & fine tuning

mug	(0.05)

phone	(0.95)
mug	(0)

phone	(1)

ytrue

FORWARD

BACKWARD

	

x
conv

1
conv

2
fcN

6
fcN

7x CNN(X)	=	ypred
fcN

8

min	E(ytrue,ypred)	

arg	min	E(w1,	w2,…)	

			 	

L.Rosasco

Initialization & fine tuning

mug	(0.05)

phone	(0.95)
mug	(0)

phone	(1)

ytrue

FORWARD

BACKWARD

	

x
conv

1
conv

2
fc

6
fc

7x CNN(X)	=	ypred
fcN

8

min	E(ytrue,ypred)	

arg	min	E(w1,	w2,…)	

			 	

L.Rosasco

Initialization & fine tuning

mug	(0.05)

phone	(0.95)
mug	(0)

phone	(1)

ytrue

FORWARD

BACKWARD

	

x
conv

1
conv

2
fc

6
fc

7x CNN(X)	=	ypred
fcN

8

min	E(ytrue,ypred)	

arg	min	E(w1,	w2,…)	

			 	

I Learning layers from scratch/from pre-learned initialization

I Learning layers more/less aggressively using different step-sizes
L.Rosasco

Training protocol(s)

I Learning at different layers

– Initialization
– Learning rates

I Mini-batch size

I Further aspect: regularization!

– Weight constraints
– Drop-out

I Batch normalization

I . . .

L.Rosasco

Wrapping up

I Unlabelled data and auto-encoders

I CNN: the power of weight sharing for learning

I Tips and tricks (fine tune!)

L.Rosasco

Final remarks

I Learning representations with deep-nets

I Learning deep-nets with back-prop

I CNN: the power of weight sharing for learning

I More deep-nets: Inception, GAN, Recurrent net, LSTM, ...

But why do they work?! Gotta be that they are like the brain...

L.Rosasco

	Some Tricks of the Trade

