Machine Learning: a crush course machine learning applications

Francesca Odone & Lorenzo Rosasco

ML applications

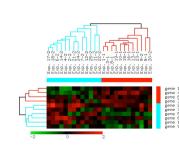
Soccer: Milan weighs attack options Gilardino tipped to lead the line, Inzaghi late card

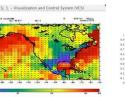
Treasury may sell all of Alitalia
Formal bids for carrier due by July 2
5:22 15:88 - New in English
Afghanistan: Rome cold on Bush call
We respend to parliament, no one else, 'FM says
\$12;21:4113 - New in English

Wine wards off senile dementia glass a day stops mild impairment worsening, Italians say

ectronic nose sniffs asthma avice developed by Italian researcher in Netherlands

with the second second





Machine Learning

systems are trained on examples rather than being programmed

Siri

Use your voice to send messages, set reminders, search for information, and more.

quite a few belong to our everyday experience



but how do they relate with the course contents?

Class #	Day	Date	Month	Daily Schedule	Subject
1	Tue	18	February	9:00 - 11:00	Introduction to Machine Learning
2	Tue	18	February	11:00 - 1:00	Local Methods and Model Selection
3	Tue	18	February	14:00 - 16:00	Lab on LM: K-NN, PW for classification
4	Wed	19	February	9:00 - 11:00	Regularization Networks I: Linear Models
5	Wed	19	February	11:00 - 1:00	Regularization Networks II: Kernels
6	Wed	19	February	14:00 - 16:00	Lab on Regularization Networks
7	Thu	20	February	9:00 - 11:00	Dimensionality Reduction and PCA
8	Thu	20	February	11:00 - 1:00	Variable Selection and Sparsity
9	Thu	20	February	14:00 - 16:00	<u>Lab PCA and Sparsity</u>
10	Fri	21	February	9:00 - 11:00	Applications of Machine Learning

plan (longer than needed)

medical image analysis: image segmentation

bioinformatics: gene selection

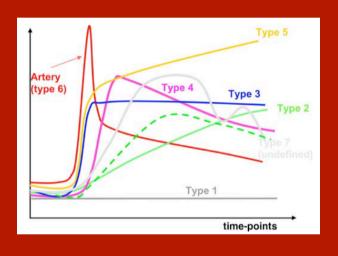
computer vision: object detection, object recognition, ...

human-machine interaction: action recognition, emotion recognition

video-surveillance: behavior analysis, pose detection

Dynamic Contrast Enhanced MRI analysis

Goal: study and implement methods to automatically discriminate different tissues based on different enhancement curve types



Approach:

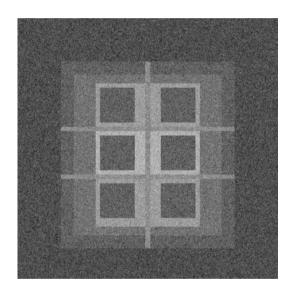
 learn from data basis signals and express the enhancement curves as linear combinations of those signals

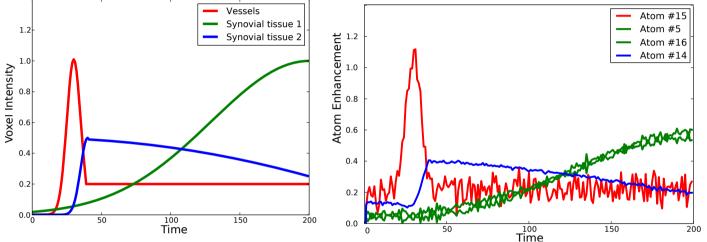
$$\mathcal{D} = \{\phi_j, j = 1, \dots, p \mid \phi_j : X \to R \ \forall j\} \text{ with } p \leq \infty$$

$$K(x, x') = \sum_{j=1}^{p} \phi_j(x)\phi_j(x')$$

Dynamic Contrast Enhanced MRI analysis

the dictionary is learnt from data:
$$\min_{D,U} ||X-DU||^2 + \tau ||U||_1 \quad s.t. ||d_i||_2 \leq 1$$

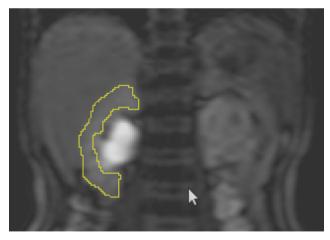




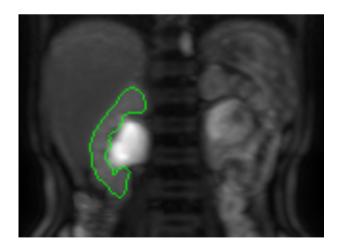
Left: the three different types of generated ECs corresponding to different tissues in the simulated phantom. Right: the four most used atoms, corresponding to the EC patterns associated with each phantom regions.

Dynamic Contrast Enhanced MRI analysis

- Automatic segmentation is obtained by means of an unsupervised method: each voxel is represented by its code (the coefficients *u* providing the lower reconstruction error w.r.t. the learnt basis *D*)
- Codes are clustered in 7 main groups (following the expert prior)



manual annotation provided by the expert

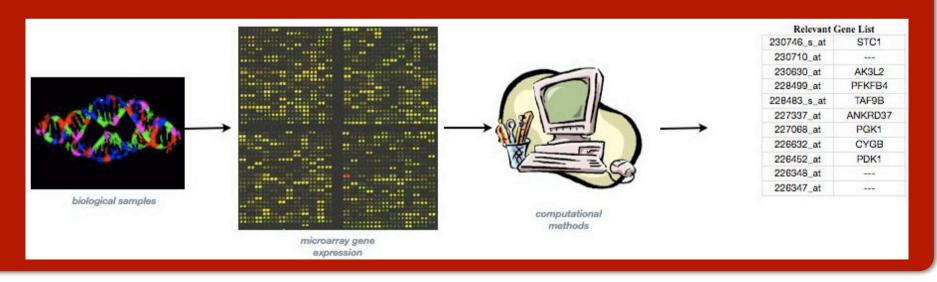


automatic segmentation

Microarray analysis

Goals:

- Design methods able to identify a gene signature, i.e., a panel of genes potentially interesting for further screening
- Learn the gene signatures, i.e., select the most discriminant subset of genes on the available data



Microarray analysis

A typical "-omics" scenario:

High dimensional data - Few samples per class

- tenths of data tenths of thousands genes
 - → Variable selection

High risk of selection bias

- data distortion arising from the way the data are collected due to the small amount of data available
 - → Model assessment needed

Elastic net and gene selection

$$\min_{\beta \in R^p} ||Y - \beta X||^2 + \tau(||\beta||_1 + \epsilon||\beta||_2^2)$$

Consistency guaranteed - the more samples available the better the estimator

Multivariate - it takes into account many genes at once

Output: One-parameter family of nested lists with equivalent prediction ability and increasing correlation among genes

- $\epsilon \to 0$ minimal list of prototype genes
- $\epsilon_1 < \epsilon_2 < \epsilon_3 < \dots$ longer lists including correlated genes

Double optimization approach

Variable selection step (elastic net)

$$\min_{\beta \in R^p} ||Y - \beta X||^2 + \tau(||\beta||_1 + \epsilon||\beta||_2^2)$$

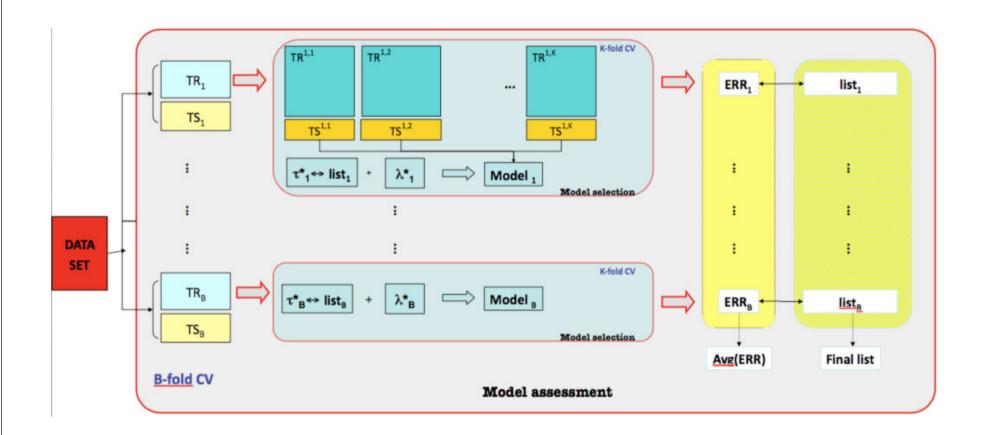
Classification step (RLS)

$$||Y - \beta X||_2^2 + \lambda ||\beta||_2^2$$

for each ϵ we have to choose λ and τ

the combination prevents the elastic net shrinking effect

Dealing with selection bias



$$\lambda \rightarrow (\lambda_1, \dots, \lambda_A)$$
 $\tau \rightarrow (\tau, \tau)$

$$\tau \rightarrow (\tau_1, \dots, \tau_B)$$

the optimal pair (λ^*, τ^*) is one of the possible $A \cdot B$ pairs (λ, τ)

Computational issues

• Computational time for LOO (for one task) $time_{1-\text{optim}} = (2.5s \ to \ 25s)$ depending on the correlation parameter

$$\begin{array}{rcl} \text{total time} & = & A \cdot B \cdot N_{\text{samples}} \cdot time_{1-\text{optim}} \\ & \sim & 20 \cdot 20 \cdot 30 \cdot time_{1-\text{optim}} \\ & \sim & 2 \cdot 10^4 s \ to \ 2 \cdot 10^5 s \end{array}$$

• 6 tasks \rightarrow 1 week!!

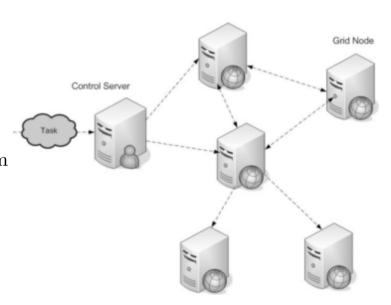


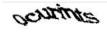
Image understanding

Image understanding is still largely unsolved

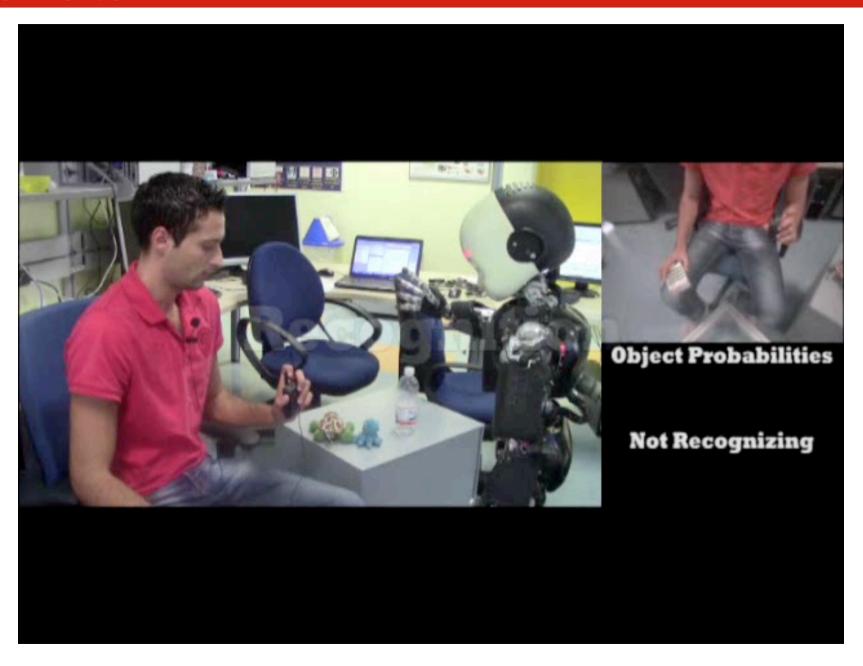
• today we are (almost) able to answer more specific questions such as object detection, image categorization, ...

Machine learning has been the key to solve this kind of problems:

- it deals with noise and intra-class variability by collecting appropriate data and finding suitable descriptions
- Notice that images are relatively easy to gather (but not to label!)
- many large benchmark datasets (with a lot of bias)
- labeling tools



iCubWorld



Object detection in images

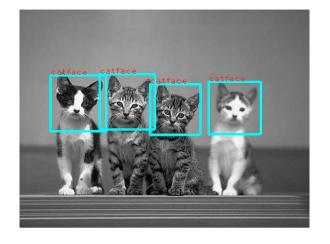
object detection is in essence a binary classification problem

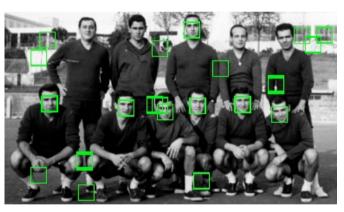
• image regions of variable size are classified: is it an instance of the object or not?

• in this 380x220 px image we perform ~6.5x10⁵ tests and we should find only 11 positives

the training set contains

- images of positive examples (the object)
- negative examples (background)





Representing the image content

There is a lot of prior knowledge coming from the computer vision literature (filters, features, ...)

- often it is easier and more effective to find explicit mappings towards high dimensional feature spaces
- feature selection has been used to get rid of redundancy and speed up computation

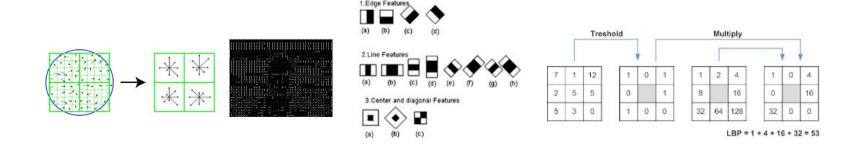
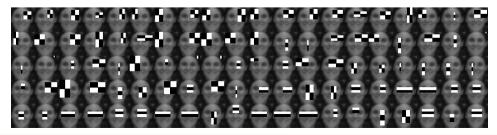


Image feature selection

rectangle features or Haar-like features (Viola & Jones) are one of the most effective representations of images for face detection

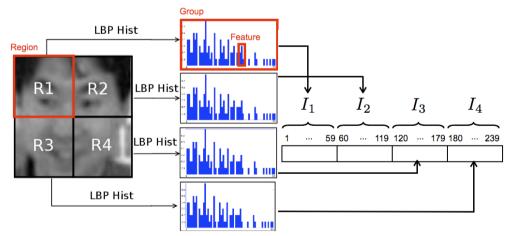
- size of the initial dictionary: a 19 x 19 px image is mapped into a 64.000-dim feature vector!
- feature selection may help us reducing the size and keeping only informative elements



Selecting feature groups

Many image features have a characteristic internal structure

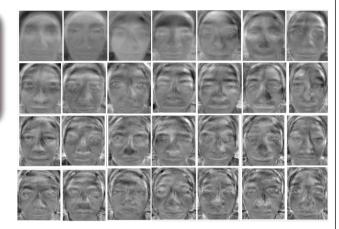
An image patch is divided in *regions* or *cells* and represented according to the specific description, then all representations are concatenated



Feature selection can be designed so to extract an entire group instead than a single feature

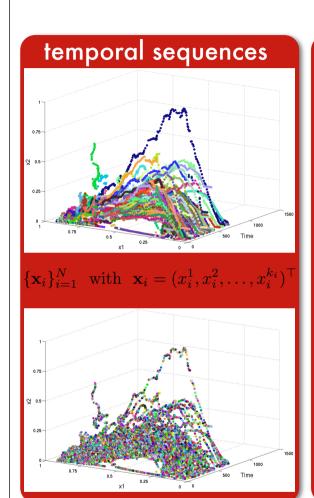
an interesting study case: Eigenfaces

- Goal: represent face images for recognition purposes (who's that face?)
- build X data matrix where each row is a face image (unfolded)

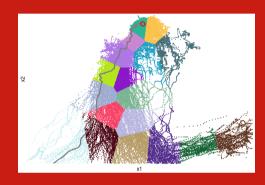


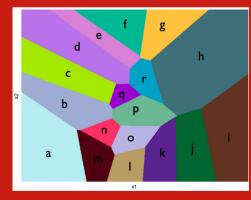
- PCA(X^TX): each eigenvector can be seen as an image, the *eigenface*;
- they are the directions in which the images differ from the mean image.
- eigenvectors with the largest eigenvalues are kept
- at run time an image is represented by projecting it onto the chosen directions
- many variants...
 - this simple idea is more appropriate for image matching
 - not robust to illumination and view-point changes

Learning common patterns in temporal sequences



adaptive space quantization





P-spectrum kernel for sequences

$$\phi_u^P(s) = |\{(v_1, v_2) : s = v_1 u v_2\}|$$

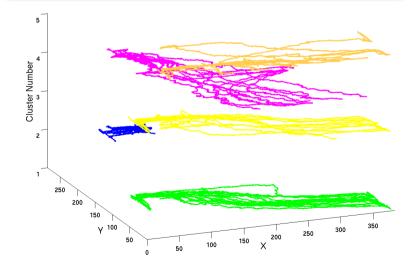
where $u \in \mathcal{A}^P$, while v_1, v_2 are substrings such that $v_1 \in \mathcal{A}^{P_1}$, $v_2 \in \mathcal{A}^{P_2}$, and $P_1 + P_2 + P = |s|$.

The associated kernel between two strings s_1 and s_2 is defined as:

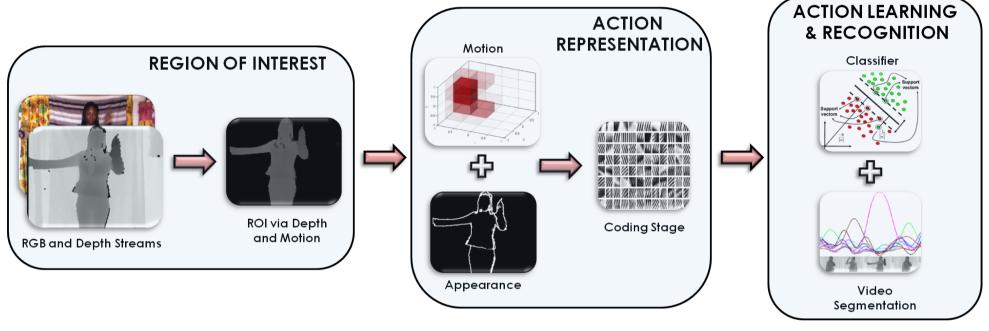
$$K_P(s_1, s_2) = \langle \phi^P(s_1), \phi^P(s_2) \rangle = \sum_{u \in A^P} \phi_u^P(s_1) \phi_u^P(s_2).$$

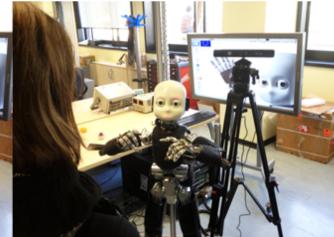
String length independence is achieved with an appropriate normalization

$$\hat{K}_P(s_1, s_2) = \frac{K_P(s_1, s_2)}{\sqrt{K_P(s_1, s_1)} \sqrt{K_P(s_2, s_2)}}$$



HMI: iCub recognizing actions





HMI: iCub recognizing actions

All Gestures You Can: A Memory Game

I. Gori, S.R. Fanello, G. Metta, F. Odone

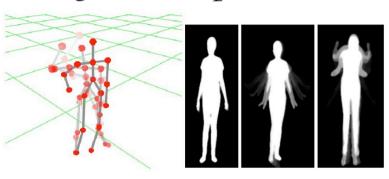
Department of Robotics, Brain and Cognitive Sciences Istituto Italiano di Tecnologia Dipartimento di Informatica e Scienza dell'Informazione Università degli Studi di Genova

HMI: emotion recognition from body movements

Research Centre scientific and technological research /artistic research and creation /international education

casa **Paganini** — infoMus

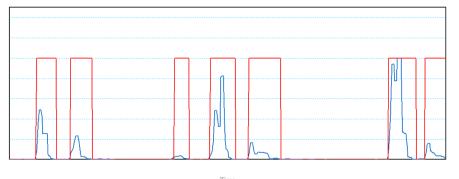
• input data: streams of 3D measurements



• intermediate representations: dimensions suggested by psychologists, related to space occupation or the quality of

motion

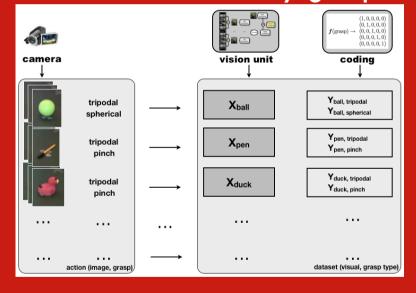
gesture segmentation

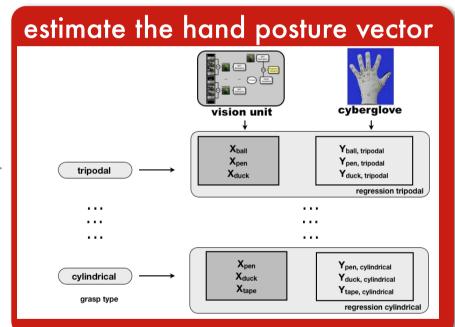


• multi-class classification of 6 emotions based on a combination of binary SVM classifiers

Learning the appropriate type of grasp

estimate the most likely grasps





Semi-supervised pose classification

The capability of classifying people with respect to their orientation in space is important for a number of tasks

- An example is the analysis of collective activities, where the reciprocal orientation of people within a group is an important feature
- The typical approach relies on quantizing the possible orientations in 8 main angles
- Appearance changes very smoothly and labeling may

