Machine Learning: a crush course

machine learning applications
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Machine Learning

systems are trained
on examples
rather than being

programmed
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Use your voice to send
messages, set reminders,
search for information,
and more.
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quite a few belong to our everyday experience

Pedestrian detection

face qletection

speech recognition
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but how do thevy relate with the course contents?

Class# | Day | Date Month Daily Schedule Subject
1 Tue 18 February 9:00-11:00 Introduction to Machine Learning
2 Tue 18 February 11:00 - 1:00 Local Methods and Model Selection
3 Tue 18 February 14:00 - 16:00 Lab on LM: K-NN, PW for classification
4 Wed 19 February 9:00-11:00 Regularization Networks |: Linear Models
5 Wed 19 February 11:00-1:00 Regularization Networks |I: Kernels
6 Wed 19 February 14:00 - 16:00 Lab on Reqularization Networks
7 Thu 20 February 9:00-11:00 Dimensionality Reduction and PCA
8 Thu 20 February 11:00 - 1:00 Variable Selection and Sparsity
9 Thu 20 February 14:00 - 16:00 Lab PCA and Sparsity
10 Fri 21 February 9:00-11:00 Applications of Machine Learning
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polan (longer than needed)

medical image analysis: image segmentation
bioinformatics: gene selection
computer vision: object detection, object recognition, ...

human-machine interaction : action recognition, emotion
recognition

video-surveillance: behavior analysis, pose detection
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Dvnamic Contrast Enhanced MRI analysis

Goal: study and implement methods to automatically discriminate
different tissues based on different enhancement curve types

Approach:

learn from data basis signals and express
the enhancement curves as linear
combinations of those signals

D={¢j,j=1,...,p | ¢JX—)R Vj} with p < o0
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Dvnamic Contrast Enhanced MRI analysis

the dictionary is learnt from data: III)nIE'l ||X — DUH2 + T||U| |1 S-t-||dz'||2 <1
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Left: the three different types of generated ECs corresponding to
different tissues in the simulated phantom. Right: the four most used
atoms, corresponding to the EC patterns associated with each phantom
regions.
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Dvnamic Contrast Enhanced MRI analysis

e Automatic segmentation is obtained by means of an unsupervised
method: each voxel is represented by its code (the coefficients u providing
the lower reconstruction error w.r.t. the learnt basis D)
® Codes are clustered in 7 main groups (following the expert prior)

manual annotation , ,
automatic segmentation

provided by the expert
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Microarray analysis

Goals:

Design methods able to identify a gene signature, i.e., a panel of
genes potentially interesting for further screening

Learn the gene signatures, i.e., select the most discriminant
subset of genes on the available data

Relevant Gene List
230748 s _at STC1
230710 _at --
230630 _at AK3L2
228499 at PFKFB4
228483 s at TAFOB
227337 at ANKRD37

227065 at PGK1
226832 at CcYGB
226452 at PDK!
226348 _at ---
226347 _at
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Microarray analysis

A typical “-omics” scenario:

High dimensional data - Few samples per class

e tenths of data - tenths of thousands genes

— Variable selection

High risk of selection bias

e data distortion arising from the way the data are collected due to the small amount of data
available

— Model assessment needed
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Elastic net and gene selection

in ||V — 8X||? >
min [[Y = B + 7([[5]l1 + l|ll2)

Consistency guaranteed - the more samples available the
better the estimator

Multivariate - it takes into account many genes at once

Output: One-parameter family of nested lists with equivalent
prediction ability and increasing correlation among genes

e ¢— 0 minimal list of prototype genes

*c1 < €2 <3 <...longer lists including correlated genes
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Double optimization approach

Variable selection step (elastic net)

in ||Y — B8X||? >
min || — X"+ 7(|I5]]1 + €llAll2)

Classification step (RLS)
1Y = BX|53+ AlIBI

for each € we have to choose A\ and 7

the combination prevents the elastic net shrinking effect
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Dealing with selection bias

/ 'ﬁu i - K-fold c{[\\‘
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Model assessment

N

B-fold CV

A — ()\17---7)\14)

T — (7’1,...,7’3)

the optimal pair (A\*,7*) is one of the possible A - B pairs (A, 7)

MLCC
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Computational issues

e Computational time for LOO (for one task) ~ Grd Node
time, _optim = (2.5s to 25s) ‘\
depending on the correlation parameter Control Server = {\‘@\
@4 |
total time = A-B- Nsamples : timel_optim S
~ 20-20-30- tim@l—optim
~ 2:10% to 2-10°s ’ .
S =
e 6 tasks — 1 week!! Q& <O
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Image understanding

Image understanding is still largely unsolved

® today we are (almost) able to answer more specific

Machine learning has been the key to solve this kind of
problems:

appropriate data and finding suitable descriptions

label!)

e many large benchmark datasets (with a lot of bias)

questions such as object detection, image categorization,

o labeling tools ™™= carry B mazonmechanicalturk (L@@

e it deals with noise and intra-class variability by collecting

e Notice that images are relatively easy to gather (but not to
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Obiject detection in images

object detection is in essence a binary
classification problem

image regions of variable size are
classified: is it an instance of the object or
not?

unbalanced classes
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Representing the image content

There is a lot of prior knowledge coming from the
computer vision literature (filters, features, ...)

e often it is easier and more effective to find explicit mappings
towards high dimensional feature spaces

e feature selection has been used to get rid of redundancy and speed
up computation
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LBP=1+4+16+32=53
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Image feature selection

oS _—
e RS I !: :g: —p 0413 -0886 0.547
o o

rectangle features or Haar-like features (Viola &
Jones) are one of the most effective representations
of images for face detection

e size of the initial dictionary: a 19 x 19 px image is mapped
into a 64.000-dim feature vector!

e feature selection may help us reducing the size and keeping
only informative elements

= - , I >
- 1 - : 1 -
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Selecting feature groups

Many image features have a characteristic internal

structure

An image patch is divided in regions or cells and
represented according to the specific description, then all
representations are concatenated
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Feature selection can be designed so to extract an entire

group instead than a single feature
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an interesting study case: Eigenfaces

Goal: represent face images for recognition ....-'.
4 \ v .L:\' &\

purposes (who’s that face?) - /3

e build X - data matrix where each row is a face
image (unfolded)

e PCA(XTX): each eigenvector can be seen as an image, the eigenface;

e they are the directions in which the images differ from the mean image.

e eigenvectors with the largest eigenvalues are kept

e at run time an image is represented by projecting it onto the chosen
directions

* many variants...

e this simple idea is more appropriate for image matching

¢ not robust to illumination and view-point changes
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Learning common patterns in temporal sequences

temporal sequences adaptive P-spectrum kernel for sequences

space quantization

Cluster Number
I
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HMI: iCub recognizing actions
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HMI: iCub recoagnizing actions

All Gestures You Can:
A Memory Game

I.Gori, S.R.Fanello,G. Metta,F. Odone

Department of Robotics, Brain and Cognitive Sciences
Istituto Italiano di Tecnologia
Dipartimento di Informatica e Scienza dell'Informazione
Universita degli Studi di Genova
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HMI: emotion recognition from bod movements

Research Centre scientific and technological research /artistic research and © n /intemational education

casaPaganini — infoMus

e input data: streams of 3D measurements

e intermediate representations: dimensions suggested by
psychologists, related to space occupation or the quality of

motion

* gesture segmentation }J\ m

REN

e multi-class classification of 6 emotions based on a

combination of binary SVM classifiers
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Semi-supervised pose classification

The capability of classifying people with respect to their
orientation in space is important for a number of tasks

® An example is the analysis of
collective activities, where the
reciprocal orientation of people
within a group is an important

feature
Back Back
: : Back
® The typical approach relies eft w1 Ao
on quantizing the possible < > Right
orientations in 8 main angles /
Front Front
Left A\ Right

® Appearance changes very
smoothly and labeling may
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