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In this class we introduce a class of learning algorithms based Tikhonov regularization,
a.k.a. penalized empirical risk minimization and regularization. In particular, we focus on
the algorithm defined by the square loss.

While least squares are often associated to regression problem, we next discuss theyr
interpretation in the context of binary classification and discuss an extension to multi class
classification.

8.1 Nearest Centroid Classifier

Let’s consider a classification problem and assume that there is an equal number of point
for class 1 and −1. Recall that the nearest centroid rule is given by

signh(x), h(x) = ‖x−m−1‖2 − ‖x−m1‖2

where

m1 =
2

n

∑
i | yi=1

xi, m−1 =
2

n

∑
i | yi=−1

xi.

It is easy to see that we can write,

h(x) = xTw + b, w = m1 −m−1, b = −(m1 −m−1)Tm,

where

m = m1 +m−1 =
1

n

n∑
i=1

xi.

In a compact notation we can write,

h(x) = (x−m)T (m1 −m−1).

8.2 RLS for Binary Classification

If we consider an offset, the classification rule given by RLS is

signf(x), f(x) = xTw + b,

where
b = −mTw,

since 1
n

∑n
i=1 yi = 0 by assumption, and

w = (X
T

nXn + λnI)−1X
T

nYn = (
1

n
X
T

nXn + λI)−1
1

n
X
T

nYn,
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with Xn the centered data matrix having rows xi −m, i = 1, . . . ,m.
It is easy to show a connection between the RLS classification rule and the nearest

centroid rule. Note that,
1

n
X
T

NYn =
1

n
XT
NYn = m1 −m−1,

so that, if we let Cλ = 1
n
X
T

nXn + λI

b = −mTC−1λ (m1 −m−1)

and
f(x) = (x−m)TC−1λ (m1 −m−1)

If λ is large then ( 1
n
XT
nXn + λI) ∼ λI, and we see that

f(x) ∼ 1

λ
h(x)⇔ signf(x) = signh(x).

If λ is small Cλ ∼ C = 1
n
X
T

nXn, the inner product xTw is replaced with a new inner product
(x −m)TC−1(x −m). The latter is the so called Mahalanobis distance. If we consider the
eigendecomposition of C = V ΣV T we can better understand the effect of the new inner
product. We have

f(x) = (x−m)TV Σ−1λ−1V T (m1 −m−1) = (x̃− m̃)T (m̃1 − m̃−1),

where ũ = Σ1/2V Tu. The data are rotated and then stretched in directions where the
eigenvalues are small.

8.3 RLS for Multiclass Classification

RLS can be adapted to problem with T > 2 classes considering

(XT
nXn + λnI)W = XT

n Yn. (8.1)

where W is a D by T matrix, and Yn is a n by T matrix where the i-th column has entry 1 if
the corresponding input belongs to the i-th class and −1 otherwise. If we let wt, t = 1, . . . , T ,
denote the columns of W then the corresponding classification rule c : X → {1, . . . , T} is

c(x) = arg max
t=1,...,T

xTW t

The above scheme can be seen as a reduction scheme from multi class to a collection
of binary classification problems. Indeed, the solution of 8.1 can be shown to solve the
minimization problem

min
W 1,...,WT

T∑
t=1

(
1

n

n∑
i=1

(yti − xTi W t)2 + λ‖W t‖2).

where yti = 1 if the xi belong to class t and yti = −1, otherwise. The above minimization can
be done separately for all wi, i = 1, . . . , T . Each minimization problem can be interpreted
as performing a ”one vs all” binary classification.
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