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In this class we introduce the concepts of feature map and kernel that allow to generalize
Regularization Networks, and not only, well beyond linear models. Our starting point will
be again Tikhonov regularization,

min
w∈RD

1

n

n∑
i=1

`(yi, fw(xi)) + λ‖w‖2. (10.1)

10.1 Feature Maps

A feature map is a map
Φ : X → F

from the input space into a new space called feature space where there is a scalar product
Φ(x)TΦ(x′). The feature space can be infinite dimensional and the following notation is used
for the scalar product 〈Φ(x),Φ(x′)〉F .

10.1.1 Beyond Linear Models.

The simplest case is when F = Rp, and we can view the entries Φ(x)j, j = 1, . . . , p as novel
measurements on the input points. For illustrative purposes consider X = R2. An example
of feature map could be x = (x1, x2) 7→ Φ(x) = (x21,

√
2x1x2, x

2
2). With this choice if we now

consider

fw(x) = wTΦ(x) =

p∑
j=1

wjΦ(x)j

we effectively have that the function is no longer linear but it is a polynomial of degree 2.
Clearly the same reasoning holds for much more general choice of measurements (features),
in fact any finite set of measurements. Although seemingly simple, the above observation
allows to consider very general models. Figure 10.1 gives a geometric interpretation of the
potential effect of considering a feature map. Points which are not easily classified by a linear
model, can be easily classified by a linear model in the feature space. Indeed, the model is
no longer linear in the original input space.

10.1.2 Computations.

While feature maps allow to consider nonlinear models, the computations are essentially
the same as in the linear case. Indeed, it is easy to see that the computations considered
for linear models, under different loss functions, remain unchanged, as long as we change
x ∈ RD into Φ(x) ∈ Rp. For example, for least squares we simply need to replace the n by
D matrix Xn with a new n by p matrix Φn, where each row is the image of an input point
in the feature space as defined by the feature map.
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Figure 10.1. A pictorial representation of the potential effect of considering a feature map in a simple two
dimensional example.

10.2 Representer Theorem

In this section we discuss how the above reasoning can be further generalized. The key result
is that the solution of regularization problems of the form (10.1), can always be written as

ŵT =
n∑

i=1

xTi ci, (10.2)

where x1, . . . , xn are the inputs in the training set and c = (c1, . . . , cn) a set of coefficients.
The above result is an instance of the so called representer theorem. We first discuss this
result in the context of RLS.

10.2.1 Representer Theorem for RLS

The result follows noting that the following equality holds,

(XT
nXn + λnI)−1XT

n = XT
n (XnX

T
n + λnI)−1, (10.3)

so that we have,

w = XT
n (XnX

T
n + λnI)−1Yn︸ ︷︷ ︸

c

=
n∑

i=1

xTi ci.

Equation (10.3) follows from considering the SVD of Xn, that is Xn = UΣV T . Indeed we
have XT

n = V ΣUT so that

(XT
nXn + λnI)−1XT

n = V (Σ2 + λ)−1ΣUT

and
XT

n (XnX
T
n + λnI)−1 = V Σ(Σ2 + λ)−1UT .
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10.2.2 Representer Theorem Implications

Using Equation (10.2) it possible to show how the vector c of coefficients can computed
considering different loss functions. In particular, for the square loss the vector of coefficients
satisfies the following linear system

(Kn + λnI)c = Yn.

where Kn is the n by n matrix with entries (Kn)i,j = xTi xj. The matrix Kn is called the
kernel matrix and is symmetric and positive semi-definite.

10.3 Kernels

One of the main advantages of using the representer theorem is that the solution of the
problem depends on the input points only through inner products xTx′. Kernel methods can
be seen as replacing the inner product with a more general function K(x, x′). In this case,
the representer theorem (10.2), that is fw(x) = wTx =

∑n
i=1 x

T
i xci, becomes

f̂(x) =
n∑

i=1

K(xi, x)ci. (10.4)

and we can promptly derive kernel versions of the Regularization Networks induced by
different loss functions.

The function K is often called a kernel and to be admissible it should behave like an
inner product. More precisely it should be: 1) symmetric, and 2) positive definite, that is
the kernel matrix Kn should be positive semi-definite for any set of n input points. While the
symmetry property is typically easy to check, positive semi definiteness is trickier. Popular
examples of positive definite kernels include:

• the linear kernel K(x, x′) = xTx′,

• the polynomial kernel K(x, x′) = (xTx′ + 1)d,

• the Gaussian kernel K(x, x′) = e−
‖x−x′‖2

2σ2 ,

where the last two kernels have a tuning parameter, the degree and Gaussian width, respec-
tively.

A positive definite kernel is often called a reproducing kernel and is a key concept in the
theory of reproducing kernel Hilbert spaces.

We end noting that there are some basic operations that can be used to build new kernels.
In particular it is easy to see that, if K1, K2 are reproducing kernels then K1 +K2 is also a
kernel.

10-11-3


